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Abstract:

Background:

We present a case study to quantify the dangers of freeway ramps by comparing the observed accident counts from ramp locations to those from
adjacent mainline locations. Few works make this direct comparison. Additionally, time-of-day and weather information is considered to collect a
deeper  understanding of  the  nature  of  freeway accidents  near  ramps.  Real-world  data  collected from freeways in  Hamilton County,  TN,  are
considered as an application and give interesting results.

Methods:

First, we precisely define ramp influence areas or areas within close proximity to ramp locations where traffic is suspected to be affected by the
ramp structure/geometry. Then, we introduce a theoretically justified Negative Binomial regression model to approximate the relationship between
accident counts (response), presence of ramp influence areas, and additional weather and time-of-day designations. Our model also considers
selected interaction terms, route designation, and multiple random components that are aimed at explaining unmeasured sources of variation.

Results:

Based on the interpretation of our fitted statistical model, we find that being in an influence/ramp area (compared to being in mainline traffic), on
average, results in a 4-fold increase in accident frequency. Moreover, we find that during clear conditions, rush hour conditions increase the
accident frequency substantially, while during rainy conditions, this increase is much less stark. During non-rush hour conditions, rain decreases
the accident frequency substantially, and during rush hours, this decrease is intensified. Model diagnostics and a validation procedure further
justify the assumed model form and lend credence to our results.

Conclusion:

While we do not make any claim of transferability of our results, they provide a proof-of-concept that accident frequency is attributable to multiple
factors, among which is proximity to ramps. Furthermore, our procedure and statistical model allow us to directly quantify how these factors, most
notably ramp traffic, effect accident frequency. These results illuminate potential safety risks. Subsequent work considering more diverse roadways
could provide the evidence needed for policy changes and/or remedial measures.
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1. INTRODUCTION

Freeway  off-ramps  (exit  ramps)  and  on-ramps  (entrance
ramps)  are  short  sections  of  road  that  allow  vehicles  to,
respectively,  exit  and  enter  a  controlled-access  highway.
Locations  near  ramps  often  require  sudden  acceleration
/deceleration  as  drivers  respond  to  several  complex  events,
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such  as  merging,  maneuvering,  reading  road  signs,  etc.,  all
while  trying to  maintain  a  safe  distance  from other  vehicles.
Not surprisingly, this increase in volatility among drivers has
been  found  to  increase  conflict  and  ultimately  accident
frequency  [1].  As  stated  by  Hu  et  al.  [2],  the  complex
interactions associated with merging, like those found at ramp
locations,  increased  driver  workload  and  the  probability  of
errors.  In  fact,  despite  being  relatively  small  portions  of
highway  systems,  locations  near  ramps  are  particularly
dangerous and have been found to experience disproportionate
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numbers  of  accidents  [3,  4].  According  to  the  2019  NHTSA
report,  there were more than 280,000 accidents on American
highway ramps, almost 800 of which were fatal [5]. According
to  Torbic  et  al.  [6],  interchange-related  crashes  represent  a
substantial percentage of the safety concern on freeways.

Numerous  works  have  investigated  accidents  at  freeway
ramp  locations  [3,  7,  10].  Some  works  have  compared  the
effects of ramp type (on-/off-ramp, left/right exit) on observed
accident  counts  [10],  [7],  but  very  few  works  have  formally
compared  accidents  at  ramps  to  those  occurring  on  mainline
segments  [8,  11,  12].  This  is  a  primary  goal  of  our  work:  to
quantify the effect of ramp traffic on accidents. Furthermore,
this work will consider additional sources, weather and time-
of-day, to gain an insight into the general nature of accidents
near freeway ramp locations – a holistic understanding of ramp
accidents.  Additionally,  and  not  less  importantly,  we  will
introduce  a  rigorous  statistical  model  that  captures  the  true
nature of accident data. To test the legitimacy of our approach,
we will  apply our procedure to real-world data from the two
largest freeways in Hamilton County, TN, and our fitted model
parameters will be interpreted to provide context.

We note  that  this  work  contributes  to  the  field  of  traffic
analysis  in  the  following  ways.  First,  it  directly  compares
accidents  at  ramp  locations  with  those  occurring  in  adjacent
mainline segments, an uncommon approach. This will allow us
to directly quantify the ramp effect on accident counts. Second,
additional sources of variability, weather and time-of-day, are
considered. This results in a unique combination of explanatory
variables that may allow us to identify complicated, nuanced
relationships.  Third,  we  introduce  a  theoretically  justified
count-based statistical model that will capture the variability of

accident frequency and allow for physical interpretation.

We would be remiss not to note that ‘human error’ plays
an  important  role,  and  likely  a  primary  role,  in  roadway
accidents [2, 13, 14]. While we cannot detect this human error
directly (we do not have driver information prior to accidents),
we  can  quantify  it  indirectly.  That  is,  we  can  observe
disruptions  in  traffic  conditions  that  may  force  driver  errors
that can lead to crashes [15]. The explanatory variables chosen
for  this  analysis  are  these  disruptions,  the  conditions  from
which human error will emerge.

The remainder of this work is presented as a theoretically
justified  case  study,  with  four  broad  sections.  Section  2
(“Materials and methods”) presents several subsections which
discuss the following: the presentation and justification of the
statistical  model  to  be  used,  the  explanatory  variables  to  be
used  with  justification  for  their  inclusion  in  the  analysis,
identification  of  influence  areas  to  distinguish  ramp  and
mainline  traffic,  the  collection  sites  from  which  data  are
extracted, additional data sources, a data summary, our formal
statistical  model,  and  our  model  fitting  procedure.  Section  3
(“Results) presents a method for interpreting our fitting model
results, the effect of our explanatory variables on the observed
accident counts, model diagnostics, and a validation procedure.
Section 4 (“Discussion”) gives perspective and interpretation
of  our  findings/results,  and  section  5  (“Conclusion”)
summarizes  our  work  and  identifies  our  important  findings,
some shortcomings or our procedure, and possible directions
for future work.

To assist the reader, the flowchart below Fig. (1) gives a
concise summary of our experimental procedure.

Fig. (1). Flowchart of the procedure, from raw data to interpretation of the statistical model.
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2. MATERIALS AND METHODS

2.1. Mixed-effect Negative Binomial Regression Model

For  our  statistical  modeling,  we  will  ultimately  use  a
Negative  Binomial  (NB)  regression  form.  This  first  assumes
that  accident  count  data,  Y,  follows  a  NB  distribution,  or
yi~NB(yi|λi,  ϕ),  with  (eq.  1),

(1)

where λi >0 is the mean, ϕ is an over-dispersion parameter, and
Γ(∙)  is  the  Gamma  function.  The  traditional  NB  regression
model, then, has the following form (eq. 2):

(2)

where  log  (ηi)  is  an  offset,  β0  is  an  intercept,  and  βi  are  the
model  coefficients  (to  be  estimated)  associated  with  the
predictors  xi.  This  NB  model  form  was  pursued  for  two
reasons.  First,  it  is  theoretically  justified.  There  are  several
model  forms  that  approximate  count  data  such  as  traffic
accidents.  These  include,  but  are  not  limited  to,  Poisson
regression,  Negative  Binomial  regression,  and  zero-inflated
models. Since our final dataset contains very few zero values,
the  Poisson and NB forms were  the  logical  forms to  pursue.
The  Poisson  form,  however,  assumes  equi-dispersion,  or  the
mean and variance of the data in question are the same (that is,
E(yi) = Var (yi = λ), and this is not the case with our accident
data.  Thus,  the  NB regression model  was  pursued instead as
this form includes a parameter to specifically account for over-
dispersed  data,  the  ϕ  in  (1).  Thus,  if  Y  is  a  random variable
from a NB distribution,  Var(yi)  =  λ  i+ϕi

2,  and the  variance is
allowed to differ from the mean. The second reason we chose
to pursue the NB form is based on ease of interpretation. That
is,  compared  to  some  modern  types  of  modeling  (machine
learning,  for  example),  a  major  advantage  of  a  regression
model  is  the  relatively  straightforward  interpretation  of  the
fitted model parameters. Or, given a fitted model, we will be
able  to  assess  the  relative  effect  of  each  variable  on  the
response  variable.

There is extensive literature supporting the use of the NB
form  for  roadway  accident  counts,  yet  these  works  vary
considerably in terms of scope. Chengye and Ranjitkar [8] used
NB  models  and  data  collected  from  a  highway  in  Auckland
(NZ) to link accident frequency to ‘nonbehavioral’ factors such
as  traffic  conditions,  roadway  characteristics,  and  weather
conditions.  Shankar  et  al.  [16]  used  a  NB  model  on  data
collected  from  rural  highways  to  identify  the  relationships
between  accident  frequency  and  roadway  geometry,  weather
factors,  and  various  interactions  between  them.  Milton  and
Mannering  [17]  used  the  NB model  and  data  collected  from
Washington highways to isolate the effects of geometric and
traffic  characteristics  on  annual  accident  frequency.  Among
other  findings,  the  authors  concluded  that  NB  regression
models  are  particularly  appropriate  for  modeling  accident
counts,  especially  in  instances  where  data  are  overdispersed
relative to the mean. Abdel-Aty and Radwan [18] used the NB
form  to  model  the  frequency  of  Florida  highway  accident
occurrence  based  on  roadway  geometry,  urban/rural

designations,  and  section  length.  Other  works  using  the  NB
model form for accident count data include Hauer et al. [19],
Knuiman et  al.  [20],  Miaou et  al.  [21],  Hadi  et  al.  [22],  and
Bauer and Harwood [7].

Because we will ultimately consider a selection of roadway
locations (ramps from different routes) in our analysis,  these
locations will be used in our model as random intercepts (thus,
we  have  a  mixed-effects  model  containing  both  random and
fixed effects). So, equation (2) becomes

(3)

where γj represents the random intercept for the jth location with
γj~Normal (0,σ2). We assume that the different locations have
differences/features that are site specific (roadway geometry,
visibility issues, etc.). From the existing literature, it has been
well established that such features are predictors of accidents in
general [17] and specifically at ramp locations [7]. However, at
the  time  of  this  analysis,  we  did  not  have  a  reliable  way  of
identifying  detailed  roadway  geometries  for  each  location.
Furthermore,  some  site-specific  differences,  such  as  human
behavior,  visibility  issues,  etc.  are  difficult  or  impossible  to
measure  directly.  The  use  of  random  effects  overcomes  this
shortcoming in the data by allowing the counts  to vary from
location  to  location.  In  other  words,  random  effects  in  our
statistical  model  will  allow  for  site-specific  variation  and
essentially serve as catch-alls for sources of variation that are
unobserved,  unmeasurable,  or  simply  too  complicated  to  be
modeled directly.

Several  studies  use  NB  model  forms  with  random
components.  Gong  et  al.  [23]  applied  a  random-effect  NB
model  to  crash  counts  collected  at  different  types  of
intersections.  Wenfang et  al.  [24]  found that  a  mixed-effects
NB regression model was effective in predicting bus accident
frequency on certain sections of roads in Nanjing, China. Chin
and  Quddus  [25]  used  a  random-effects  NB  model  on  data
collected from signalized intersections in Singapore to identify
relationships  between  accident  occurrence  and  geometric,
traffic, and control characteristics. Shankar et al. [26] explored
NB  and  random-effect  NB  forms  to  approximate  median
crossover  accident  frequencies  for  several  routes  in
Washington.  Using roadway geometry,  traffic  volume,  and a
random effect  to  account  for  different  routes,  they found the
random-effect  model  to  be  superior.  In  a  related  study,
Ulfarsson and Shankar [27] compared NB and random-effects
NB  models  to  a  Negative  Multinomial  model  for  accident
frequency.  Lastly,  and  germaine  in  this  work,  some  studies
have  controlled  for  heterogeneity  attributable  to  spatial  and
temporal correlation via random effects [28 - 30].

2.2. Ramps, Rain, and Rush Hour Traffic as Explanatory
Variables

In  our  NB  model,  we  consider  fixed-effect  explanatory
variables  related to  ramp location,  weather,  and time-of-day.
The goal of this study is to present a simplified procedure that
gives  a  broad  view  of  the  nature  of  freeway  accidents.  In
keeping  with  this  goal,  we  identify  the  following simplified,
dichotomous (binary) explanatory variables that distinguish 1)
ramp  area  from  mainline  traffic,  2)  inclement  from  clear

𝑃(𝑌 = 𝑦𝑖) =
Γ(𝑦𝑖+1/𝜙)

Γ(𝑦𝑖+1)Γ(1/𝜙)
(

1

1+𝜙𝜆𝑖
)

1/𝜙
(

𝜙𝜆𝑖

1+𝜙𝜆𝑖
)

𝑦𝑖

 

log 𝜆𝑖 = log(𝜂𝑖) + 𝛽0 + ∑ 𝑥𝑖𝛽𝑖
𝑛
𝑖=1  

log 𝜆𝑖𝑗 = log(𝜂𝑖𝑗) + 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑖𝑗
𝑛
𝑖=1 + 𝛾𝑗 
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weather,  and  3)  rush  hours  from  non-rush  hours.  Such
simplified  variables  also  have  the  added  benefit  of  making
efficient use of what will ultimately be a limited dataset. That
is, accidents are generally rare, and further focusing on ramp
locations substantially reduces the available data. As suggested
by  Mannering  and  Bhat  [31],  simplified  models  may  be
necessary  for  situations  where  the  data  needed  for  more
complex  analyses  are  not  available.  We  note  that,  in  our
statistical  modeling,  we also pursue the interactions between
these  simplified  variables.  In  their  analysis  of  safety
performance  functions,  Islam  et  al.  [32]  identified  the
importance of incorporating interactions between variables for
the estimation of accident prediction models.

Research  suggests  ramps  are  key  features  related  to
roadway accidents. In a work by McCartt et al. [3], Chi-square
tests  were  used  to  significantly  associate  specific
roadway/ramp characteristics with different types of crashes.
Chengye  and  Ranjitkar  [8]  showed  that,  in  addition  to  other
roadway features, the presence of on- and/or off-ramps had a
significant effect on accident counts. In comparing ramp and
mainline segments, Van Beinum et al. [11] found that traffic is
more turbulent around ramps due to route choice-related lane
changes and anticipatory or cooperative maneuvers. Chen et al.
[12]  quantified  the  safety  impacts  of  different  types  of  exit
ramps on freeway diverge areas. In their application of multiple
correspondence analysis, Das et al. [33] found that on and off-
ramps  were  associated  with  non-inclement  weather  crashes.
Wang et  al.  [9]  studied crashes on expressway ramps during
periods of low visibility, finding an increase in crash likelihood
as  visibility  decreases.  Bauer  and  Harwood  [7]  used  count-
based regression models, both Poisson and Negative Binomial,
to  explore  the  relationships  between  traffic  accidents  and
geometrics of interchange ramps and speed-change lanes. The
authors  collected  accident  data  from  both  ramp  and  speed-
change  lanes  and  found  that  most  of  that  variability  in
accidents  was  explained  by  ramp  Annual  Average  Daily
Traffic  (AADT).  Other  works investigate ramps and specific
types  of  accidents,  such  as  those  occurring  in  construction
zones [34] or involving trucks only [35].

Next,  weather  conditions,  especially  precipitation/rain
events,  have  been  found  to  be  important  components  of
accident  prediction  [8,  9,  16,  36  -  41].  That  said,  the
relationship between rain and accidents is not always straight-
forward.  Of  course,  positive  relationships  between  rain  and
accidents  have  been  established  [39],  but  some  works  have
found decreases in accidents  with the onset  of  rain [8]  or  no
significant  association  between  rain  and  accidents  [42].  The
relationship between rain and accidents is likely complicated,
nuanced, and depends on (interacts with) other factors. There
are  numerous  studies  illustrating  the  significant  effect  of
weather  interactions  on  roadway  accidents.  Laflamme  et  al.
[43] found that the effects of weather are very much dependent
on  traffic  volume  and  location.  Shankar  et  al.  [16]  pursued
numerous  interactions  between  weather  and  geometric
variables  as  part  of  their  accident  models.  Wen  et  al.  [44]
found  numerous  interactions  between  weather  conditions
(wind, precipitation) and roadway geometry (curvature, slope)
to be significantly correlated with freeway crash risk. Shankar
et  al.  [45]  found  that  weather,  both  as  a  main  effect  and

interaction with roadside/traffic parameters, plays a statistically
significant role in roadside crash occurrence. Jung et al.  [46]
found that a number of interactions with rainy conditions were
positively associated with injury crashes.

Lastly,  investigating  the  effect  of  rush  hour  on  accident
counts makes logical sense and allows for a sound statistical
analysis  of  accident  counts.  As  succinctly  pointed  out  by
Persaud  and  Dzbik  [47],  many  statistical  models  tend  to  be
macroscopic  in  nature  as  they  relate  accident  occurrence  to
average daily traffic rather than to the specific flow at the time
of accidents. As the authors point out,  such models overlook
rush  periods  when  roadways  have  clearly  different  accident
potentials. Using a dedicated rush-hour variable is an attempt
to address and resolve this issue. Indeed, in their work in the
application  of  generalized  linear  models  to  predict  freeway
accidents,  Persaud  and  Dzbik  [47]  found  that  freeways
associated  with  rush  hour  congestion  were  accompanied  by
greater  collision  risk.  Other  works  have  similarly  used  rush
hour  designations  in  their  accident  models.  Using  logistic
regression models to predict the hourly likelihood of weather-
related  road  accidents,  Becker  et  al.  [48]  showed  that,  in
general,  probabilities  had  a  pronounced  diurnal  cycle  with
maximum  probability  during  morning  and  afternoon  rush
hours.  Similar  to  our  approach,  Ma et  al.  [49]  used  a  binary
variable to distinguish between rush hours and non-rush hours
in their logit model to predict the severity of auto crashes. In a
study of time-series data mining models, Pan et al. [50] showed
that considering rush hour behavior can improve the accuracy
of  predictors  by  up  to  78%.  Moreover,  there  are  works  that
indirectly support  the use of  rush hour variables.  It  has been
found  that  increased  time  pressure  on  drivers  and  traffic
congestion  is  common  during  rush  hours  [49],  and  this
combination  of  stress  and  congestion  results  in  aggressive
driving [51, 52], ‘turbulent’ traffic, and ultimately increases in
accidents.  Finally,  it  is  worth  mentioning  that  ‘rush  hour,’
while  primarily  serving  as  a  proxy  for  increases  in  volume,
may  serve  as  a  ‘catch-all’  for  other  daily  changes  in  traffic
conditions.  Such changes can include,  but are not limited to,
fluctuations  in  speed,  increased  aggressiveness,  and  even
changes  in  light/glare.

In  summary,  as  seen  in  section  2.1,  several  studies  have
shown the appropriateness of using the NB regression form to
explain accident counts, and many of these models have used a
type of random effect term. As seen above (in this subsection),
numerous  works  have  shown  weather  variables  and  time-of-
day,  especially  rush  hours,  to  be  significant  predictors  of
accident frequency. Moreover, as seen above, there have been
studies  that  investigated  the  effect  of  different  types  of
roadway  features  and  ramps  on  accident  frequency.

From our perspective, relative to the goals of this analysis,
each  work  referenced  has  elements  that  can  inform our  own
procedure, as well as elements that simply do not apply. That
is,  these referenced works are  very much tailored to  specific
research goals or types of data, so no one approach can be used
universally. Our goal, then, is to use the pros and cons of the
existing  literature  to  guide  our  own  procedure.  Many  of  the
works  referenced  in  section  2.1,  particularly  those  using  NB
models  with  random  effects,  influenced  our  modeling
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approach, and these works lend credence to the appropriateness
of such models. However, for our case, we need to extend these
models  to  include  nested  random  effects  (to  be  discussed  in
section 2.7) to properly account for the nature of our particular
data. To our knowledge, no published work has used a model
such as ours. In this section (above), we discuss many works
that investigated the association between accidents and some
subset  of  ramp,  weather,  and  time-of-day  variables  in  their
models.  None,  however,  used  this  exact  combination  of
variables, along with interactions between them. We pursued
these variables (and interactions) because we consider them to
be the primary, important, logical predictors of accidents, and
we expect them to account for the majority of the variability
observed in  accident  counts.  In  this  way,  we feel  our  results
will fill a ‘gap’ in the literature by identifying a high-level, yet
nuanced understanding of freeway accidents near ramps. Such
understanding is necessary so that, ultimately, these conditions
can be corrected or addressed [53].

2.3. Defining Influence Areas and Clear Zones

For  this  work,  we  need  to  devise  a  procedure  for
identifying  freeway  sections  that  can  be  used  to  address  our
research objectives.  With a primary goal of investigating the
relationship between accident frequency and proximity to on-
and off-ramps, and to keep the analysis as simple as possible,
we  decided  to  discretize  freeway  sections  near  ramps  into
influence areas and clear zones. Very simply, influence areas
are sections of freeway in close proximity to ramps where we
expect  to  find  a  disproportionally  high  number  of  accidents.
Clear zones, on the other hand, are areas set further away from
the  ramp,  locations  that  are  not  expected  to  be  directly  and
adversely affected by the ramp. We can think of clear zones as
representative  sections  for  mainline  freeway  traffic.  The
remainder  of  this  section  is  devoted  to  defining  influence
areas/clear  zones  and  justification  for  our  definitions.

For  off-ramp  locations,  the  influence  area  is  the  section
immediately before the exit, starting from the gore point and
extending 1,500ft (457.2 meters) upstream. The corresponding
clear zone is then the area starting at the upstream boundary of
the  influence  area  and  extending  an  additional  1,500ft
upstream.  For  on-ramp  locations,  on  the  other  hand,  the
influence  area  is  the  section  immediately  following  the
entrance,  starting  from  the  gore  point  and  extending  1,500ft

downstream. The corresponding clear zone, in this case, is then
the area starting at the influence area boundary and extending
an  additional  1,500ft  downstream.  See  Fig.  (2)  below for  an
illustration of influence areas and clear zones.

If the length of a designated influence area is too long, the
reported accidents may include mainline accidents or accidents
not directly influenced by ramps. If the selected length is too
short, however, we may not be able to assess the true influence
of  the  ramp on  freeway traffic.  The  lengths  of  our  influence
areas  were  chosen  primarily  based  on  the  merge/diverge
influence areas defined by the Highway Capacity Manual [54],
which defines these areas as 1,500ft before and after off- and
on-ramps,  respectively.  Similarly,  a  thorough  work  by  Chen
[55] defined influence areas of 1,500ft from gore points. Other
works used influence areas between 1,000ft and 2,000ft from
gore  points  [56  -  58].  Slightly  longer  and  shorter  influence
areas were investigated with only subtle changes in the results.
Regarding the use of fixed-lengths for traffic studies, Cafiso et
al. [59] found that fixed-length segmentation (such as we have)
is  a  flexible  and  statistically  consistent  technique,  and  other
works  have  used  fixed-length  segments  to  study  traffic
accidents  [43,  60].

Next,  while  there  may  be  some  merit  to  defining  ramp
locations  to  include  areas  downstream  of  off-ramps  and
upstream of on-ramps, we decided against this to focus solely
on  the  areas  similar  to  the  merge/diverge  influence  areas
defined  by  the  Highway  Capacity  Manual  [54].  Prior
investigations of  the data suggest  that  areas upstream of off-
ramp  and  downstream  of  on-ramp  are  the  most  important
locations  in  terms of  accident  occurrence.  Research supports
this.  In  a  thorough  work  by  Hossain  and  Muromachi  [15],  a
random  multinomial  logit  model  was  used  to  identify
significant  predictors  of  accidents  near  ramps  on  a  Tokyo
expressway.  The  authors  found  that  only  the  locations
upstream of an off-ramp and downstream of an on-ramp (our
influence  areas,  as  defined)  were  useful  predictors.  They
concluded that maneuvering mainly occurs downstream of on-
ramps  and  upstream of  off-ramp,  and  these  areas  have  more
detectable  interruptions  in  the  mainline  traffic  flow.  Finally,
and importantly,  extending the  influence downstream of  off-
ramp location and upstream of on-ramp location could likely
introduce  areas  with  dissimilar  crash  features  and  influential
factors.

Fig. (2). Illustration of influence areas and clear zones associated with both on- and off-ramps.
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As  previously  mentioned,  each  influence  area  has  a
corresponding clear zone of the same length of 1,500ft.  This
was done intentionally to make the clear zones and influence
areas  more  comparable  and  limit  any  potential  change  in
exposure.  That  is,  if  the  corresponding  clear  zones  and
influence  areas  are  of  the  same  length  (and  have  the  same
collection  period  as  they  do),  we  do  not  have  to  specifically
account for such differences in our statistical modeling and we
can,  potentially,  more  easily  identify  the  true  sources  of
accident  variables  between  the  areas.  Moreover,  these  clear
zones represent mainline traffic that is NOT influenced by the
presence  of  an  off-  or  on-ramp,  and  Chen  [55]  found,  from
field observations, that ramps had little influence on mainline
traffic beyond a length of 1,500ft. We acknowledge that this is
a general approach and that the dimension of an influence area
is  likely  dictated  by  numerous  factors  such  as  ramp  type
(entrance or exit), speed limit, ramp curvature, visibility, and
other features. In other words, the unique features of the ramp
determine the exact dimensions of the influence areas. Because
much  of  this  information  was  not  available,  and  to  keep  the
procedure  as  simple  as  possible,  we  opted  to  use  a  constant
influence area length for all locations. Lastly, we note that the
ramp locations chosen for this analysis are somewhat similar
(comparable speed limits, no overlapping influence areas, no
‘complicated’ ramp structures, etc.), and our influence area is
believed to work, in general, for these cases.

2.4. Collection Sites

As mentioned throughout this work, freeway ramps are the
focus  of  this  analysis,  and  as  such,  the  two  major  interstate
highway systems in Hamilton County, Interstate routes I75 and
I24,  were  used  as  collection  sites.  Both  I75  and  I24  are
interstate  freeways/highways  with  between  2  and  6  lanes  of
one-directional travel. Route I75 starts at the GA state line in
the south/central portion of Hamilton County and travels in the
northeast direction for approximately 15.6 miles (see Fig. (3)
below, red line). Route I24 begins in the southwest portion of
the  county  at  the  GA  state  line  and  runs  in  the  east/west
direction  for  approximately  14.7  miles  until  it  connects  with
I75 (see Fig. (3), blue line). These routes are ideal collection

sites as they both contain numerous on- and off-ramps, observe
frequent roadway accidents, and experience heavy daily traffic
with AADTs exceeding 120,000 at  some locations.  Both I75
and I24 have north/south and east/west directional distinctions,
respectively,  and  we  suspect  there  may  be  some  differences
between  them.  For  our  statistical  model,  the  ‘route’  variable
will  distinguish  between  the  four  categories:  I75North,
I75South,  I24East,  and  I24West.

2.5. Merging Datasets

A major task associated with this work is the creation of a
dataset amenable to the envisioned procedure. To do this, we
will  need  to  identify  all  accidents  occurring  in  the  influence
areas and clear zones along I75 and I24 (as defined above), and
then further specify these accidents by time-of-day and weather
conditions.  To  do  this,  we  require  three  sources  of  data:
Hamilton  County  emergency  services,  the  DarkSky  weather
application, and the Tennessee Department of Transportation
(TDOT)  enhanced  Tennessee  Roadway  Information
Management  System  (eTRIMS)  database  (https://e-trims.
tdot.tn.gov/etrimsol/web/).

First,  based  on  dispatch  information  collected  from  first
responders  (police,  fire,  and  EMS),  the  Hamilton  County
Emergency Communications Center provided information for
all  traffic  accidents  along  I75  and  I24.  At  the  time  of  data
acquisition,  accident  information  was  available  between
January 1,  2017 and December 31,  2018,  a  2-year  collection
period.  Importantly,  each  accident  record  has  an  associated
physical location in terms of route, latitude/longitude, and mile
marker designations.

Next, using TDOT’s eTRIMS (https://e-trims.tdot.tn.gov)
referencing database for roadway structures, we were able to
precisely identify the gore point location of on- and off-ramps
along  I75  and  I24.  Then,  the  influence  area  and  clear  zone
boundaries are defined by identifying two successive 1,500ft
sections  upstream/downstream  of  off-/on-ramp  locations.  At
this point, we can easily identify every influence area and clear
zone in  terms of  mile  marker  and route.  Each influence area
and  clear  zone  was  then  assigned  an  accident  count  by
matching  accidents  to  the  boundaries  of  these  areas.

Fig. (3). Map of I75 (red line) and I24 (blue line) in Hamilton County, TN Source: Tennessee Department of Transportation (2022). Enhanced
Tennessee Roadway Information Management System (Version 7). https://e-trims.tdot.tn.gov/etrimsol/web/.
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As  a  penultimate  step,  weather  conditions  were
incorporated into the dataset. Based on physical location and
time/date  information  (both  provided  by  Hamilton  County
Emergency  services),  we  were  able  to  link  each  accident  to
specific weather conditions. These conditions were identified
by using the DarkSky weather application (https://darksky.net),
an  API  for  Python  that  collects  weather  data  from  several
weather resources and makes available information associated
with specified locations at precise time periods. To simplify the
process,  clear  and  cloudy  conditions  are  combined  into  one
classification  called  ‘clear;’  and  rainy,  foggy,  and  snowy
conditions are combined into one classification called ‘rainy.’
We then introduce a categorical variable to distinguish between
the  two  classifications:  clear  (actually  clear  or  cloudy)  and
rainy  conditions  (actually  rainy,  foggy,  or  snowy).  While
different  studies  used  varying  degrees  of  simplification,  it  is
not  uncommon  for  researchers  to  discretized  categories  of
weather  conditions  when  studying  the  effects  of  weather  on
accident risk [36].

Lastly,  based  on  time  records  collected  by  the  Hamilton
County  emergency  services,  each  accident  was  identified  as
either a “rush hour” accident or “non-rush hour” accident. As is
somewhat  standard,  the  rush  hour  was  identified  as  between
6-9AM  and  4-7PM.  While  this  may  seem  like  a  coarse
simplification,  distinguishing  between  these  periods  is
perfectly sufficient  to  provide interesting,  meaningful  results
that  would  be  of  general  interest  to  city  planners,  freeway
administrators, etc.

Based on previous work [61, 62], we suspect that weekend
traffic  does  not  follow  the  same  rush  hour  trends  observed
during  the  week.  Furthermore,  it  is  likely  that  recreational,
weekend travel has a higher potential for accidents. Because of
these potential differences, considering weekend accidents in
our  analysis  would  surely  require  an  additional  variable  to
distinguish weekend from weekday accidents. In our opinion,
this  would  make  for  an  overly  complicated  model.  For
simplicity,  and  to  maintain  homogeneity  in  the  dataset,  we
decided  to  focus  exclusively  on  weekday  (Monday-Friday)
accidents.  In  an  analysis  to  identify  accident  hotspots  and
improve  prediction  methods,  Amili  [63]  found  that  weekday
and weekend traffic volumes (collected from expressways in
central Florida) differed substantially and demanded separate
analyses.

2.6. Data Summary

Along  I75,  twenty  (20)  ramps  were  selected:  9  from
I75North,  11  from  I75South.  These  ramps  are  situated  at
highway locations with between 2 and 4 lanes  of  travel,  and
posted speed limits at these locations vary between 55 and 65
mph  (between  88.5  and  104.6  kph).  During  the  collection
period,  near  these ramps,  there were a total  of  516 accidents
observed (204 for I75North, 312 for I75South), or about 24%
of all accidents occurring along I75. Along I24, eighteen (18)
ramps were selected: 9 from I24East, 9 from I24West. Like the
locations along I75, these ramps are situated at locations with
between  2  and  4  lanes  of  travel,  and  posted  speed  limits  at
these  locations  vary  between  55  and  65  mph.  During  the
collection period, near these ramps, there were a total of 569

accidents  observed  (409  for  I24East,  160  for  I24West),  or
about  28%  of  all  accidents  occurring  on  the  route.

Among  the  38  total  freeway  ramps  on  the  four  routes,
1,085  total  accidents  were  considered  for  this  analysis.  For
each of these accident records, we have the ramp/route, section
type  (influence  area  or  clear  zone),  weather  (clear  or  rainy),
and rush hour (rush hour or non-rush hour) designations. These
designations  are  the  categorical  explanatory  variables  to  be
used in this analysis. Table 1 (below) gives the distribution of
the  1,085  accidents  across  all  categories  of  explanatory
variables.

Table 1. Descriptive statistics for the categorical variables
(total  number  of  accidents  observed  for  each  variable
category  and  the  corresponding  proportion  of  total
accidents).

Categorical
Variable

Category No. of
Accidents

Proportion of
Total Accidents

Route I-75 North 204 19%
I-75 South 312 29%
I-24 East 409 37%
I-24 West 160 15%

Section type Influence area 878 81%
Clear zone 207 19%

Time-of-day Rush hours 698 64%
Non-rush hours 387 36%

Weather Clear or cloudy 930 86%
Rain, fog, or snow 155 14%

Not every ramp along I75 and I24 was considered for this
analysis. There were several ‘ramp systems’ that contained two
or  more  ramps  that  were  very  close  together.  Such
combinations  of  ramps  were  deemed  unusable  because  their
influence  areas/clear  zones,  as  we  have  defined  them (1,500
feet before/after gore point),  overlapped with other influence
areas/clear  zones.  In  these  cases,  accidents  could  occur
simultaneously  in  influence  areas  and  clear  zones,  so  these
confounding  cases  were  disregarded.  Furthermore,  any
accidents occurring at these locations are potentially caused by
a flawed design and not simply the influence of the ramp. We
feel  justified,  then,  not  to  consider  such  locations  in  our
analysis.  The  38  ramps  used  in  this  analysis  were  ‘simple’
cases  that  had  no  interference  with  other  ramps  or  roadway
structures  (locations  in  which  the  ‘ramp  effect’  could  be
isolated).

The 38 influence areas (one per ramp) had an average of
23.11 accidents and a standard deviation of 21.53, whereas the
38 corresponding clear zones had an average of 5.45 accidents
and a standard deviation of 5.5. So, as compared to the clear
zones,  the  influence  areas  have  a  higher  average  and  higher
variability in accident counts.

2.7. Statistical Modeling

A  Negative  Binomial  regression  model  was  ultimately
selected for our analysis as our data exhibits over-dispersion.
As stated, the Negative Binomial model form, compared to the
simpler  Poisson  form,  includes  an  additional  parameter  to
account for this over-dispersion, and thus it is a more flexible

https://darksky.net
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model.  We  note  that  more  exotic  versions  of  Negative
Binomial models were also pursued, namely zero-inflated and
hurdle variants. However, based on likelihood ratio tests and
comparison  of  AIC  scores,  these  more  complicated  models
were not  preferred.  Formally,  our Negative Binomial  mixed-
effects regression model is

(4)

where λijk is the mean accident count at the ith observation (i =
1,…,6), jth ramp (j=1,…,nk), and kth freeway route (k=1,…,4); ϕ
is  the  Negative  Binomial  over-dispersion  parameter  with  the
variance  of  counts  given  by   and  Ɛk(j),  γk(j)  are
nested random effects. The nested random effects, then, require
a  more  complicated  NB  regression  form  than  equation  (3).
Specifically, we have,

(5)

(6)

(7)

where log (ηijk) in is an offset; β 0 is an intercept; xdijk is a set of
indicator variables for D levels of categorical variables (AND
interactions  of  categorical  variables)  where  an  indicator
variable,  say  xdijk,  is  set  to  1  if  observation  ijk  belongs  to
category  d  (and  set  to  0  otherwise);  βd  (d=1,…,D)  are
regression coefficients to be estimated by the analysis; αk is a
fixed  effect  for  route;  ɣk(j)  is  a  nested  random  effect  with
variance   (equations  5  and  6)  to  account  for  variation  by
ramp  within  route;  and  Ɛk(j)  is  a  nested  random  effect  with
associated  ΣAR  (1)  autoregressive  covariance  matrix  (equation
(7)) to account for the serial correlation related to the position
of the ramp within route. Since the ramp locations used in this
analysis  represent  a  selection  of  all  such  locations  along  the
two routes, they are theoretically justified as random effects.

Very  often,  count-based  regression  models  like  the
Negative Binomial include an ‘offset variable’ to account for
disparate  ‘exposures’  in  the  data.  In  our  case,  all  influence
areas and clear zones are equally spaced (1,500ft length), and
the  collection  period  is  constant  (2  years),  so  our  primary
source of variation in exposure comes from changes in volume
between freeway locations. High traffic flow (represented by
AADT, hourly volume, etc.) is generally considered to increase
the risk of crashes on roadways [17, 18, 64] and specifically on
freeway ramps [7, 56]. For this reason, and based on numerous
other works that have used AADT as an offset in count-based
models (for example), AADT will be set as an exposure/offset
variable  (in  our  model  above,  ηijk  represents  the  AADT  of
observation ijk). Importantly, although this structure assumes a
linear relationship between AADT and traffic counts, our time-
of-day  variable  accounts  for  intraday  changes  in  traffic
behavior  (flows)  that  occur  daily.  Thus,  these  model
components,  when considered together,  address  the potential
nonlinear effect of traffic flow on accident counts.

Based  on  the  current  literature,  some  works  have  used
similar models (NB regression with random effects), and other
works have used some combinations/subsets of variables in this
analysis (weather, time-of-day, etc.). However, no work, to our

knowledge, uses this type of model with a nested random effect
structure  and  a  variable  to  distinguish  ramp  traffic  from
adjacent  mainline  traffic.  These  novel  elements  are
logically/theoretically  justified,  but  subsequent  sections  will
provide further support for our model.

2.8. Model Fitting

All  data  manipulation  and  statistical  analyses  were
performed using the R statistical software system [65] and its
base packages. Additionally, model fitting of the generalized
mixed models was performed using the ‘glmmTMB’ package
[66] via maximum likelihood estimation and 'TMB' (Template
Model Builder).

As a first analysis of the model-fitting results, we checked
if  the  NB  model  form  itself  is  justified.  That  is,  is  the  data
sufficiently  over-dispersed  to  warrant  the  NB  model  form
which contains an additional parameter to account for this extra
spread?  Or,  if  the  data  is  not  over-dispersed,  will  a  Poisson
form suffice? Since the Poisson model form is nested within
the  NB  model  form  (the  NB  model  has  one  additional
parameter to account for the over-dispersion), we performed a
likelihood ratio test to assess whether or not the use of the more
complicated model,  the NB model,  is necessary. In our case,
the  dispersion  parameter,  ϕ,  was  found  to  be  4.33,  and  as
suspected,  the  NB model  form was  a  statistically  significant
improvement over the simpler Poisson model (Likelihood ratio
X2 = 29.235, df = 1, p-value < 0.0001). Moreover, numerous
versions of more exotic models (for example, NB, hurdle, and
NB  with  zero  inflation)  were  tested  and  none  provided  a
significantly  better  fit  to  the  data.  Thus,  the  ‘standard’  NB
model form was justified.

Related  to  the  random  effects  in  our  mixed  model,  a
complication arises in the testing of such effects. That is, to test
these  effects,  we  are  essentially  testing  whether  or  not  the
variance parameter is zero. Since the variances must be zero or
positive, a test of zero is on the border of the parameter space,
and the tests of parameters are valid only on the interior of their
space.  Thus,  direct  tests  are  not  recommended  or  justified.
Moreover,  and  importantly,  we  feel  the  random  components
reflect  an  important,  fundamental  structure  in  the  data.  They
represent sources of variability in the data not accounted for by
our other explanatory variables. Thus, they will be estimated
and retained without direct testing.

3. RESULTS

3.1. Preliminary Comments

Since we assume an NB form,  our  explanatory  variables
have a log-linear relationship with our response variables, so
the  estimated  parameter  values  must  be  ‘exponentiated’  to
assess their relative effect on the response variable (that is, we
need to calculate an ‘incidence rate ratio’). The NB regression
form

may be expressed as

𝑌𝑖𝑗𝑘|𝜀𝑘(𝑗)𝛾𝑘(𝑗)~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆𝑖𝑗𝑘, 𝜙) 

log(𝜆𝑖𝑗𝑘) = log(𝜂𝑖𝑗𝑘) + 𝛽0 + ∑ 𝛽𝑑𝑥𝑑𝑖𝑗𝑘
𝐷
𝑑=1 + 𝛼𝑘 + 𝛾𝑘(𝑗) + 𝜀𝑘(𝑗) 

𝛾𝑘(𝑗)𝑖𝑖𝑑~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2)  

𝜀𝑘(𝑗)~Σ𝐴𝑅(1)  

log 𝜆𝑖 = log(𝜂𝑖) + 𝛽0 + ∑ 𝑥𝑖𝛽𝑖

𝑛

𝑖=1

 

 𝜆𝑖𝑗𝑘 + 𝜙𝜆𝑖𝑗𝑘
2
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(8)

As  we  can  see  from  equation  (8),  for  some  fitted
coefficient βp,  exp {βp} gives the multiplicative effect on the
mean response for each unit increase in xp. Conveniently, our
fixed effects are dichotomous (xp take values of 0 or 1 only) so
that the exp {βp}. quantities are interpreted as relative effects
on the response when the qualitative attribute is present (versus
the base case). Lastly, for mixed models, such as we have here,
statistical  tests  of  fixed  effects  are  typically  based  on  either
Wald or likelihood ratio (LRT) tests (the two are equivalent,
given a suitable sample size). Using the ‘car’ package [67] in
R, we produced Wald tests for our parameter estimates, which
test effect sizes scaled by the estimated standard error. After a
stepwise  removal  of  insignificant  terms,  a  final  model  was
identified  and  Table  2  below  gives  the  Wald  test  results  for
selected significant variables.

Table  2.  Variable  names  and  corresponding  regression
coefficient  estimates  (beta  values),  test  statistic  values,  p-
values  associated  with  statistical  tests  of  the  estimate,
exponentiated coefficient estimates for selected significant
variables.

Variable Estimate, Test Statistic, X2 p-value exp 

Influence area 1.471 178.338 ~0 4.355
Rush hour 0.743 34.202 ~0 2.102

Rain -1.456 235.817 ~0 0.233
(Rain)×(Rush

hour)
-0.558 6.053 0.0139 0.572

Second, we address the overall effectiveness of our model
to explain the observed variability in the accident counts. For a
mixed-effects model, an R2 value is not readily available from
the  model  output.  Instead,  we  can  calculate  an  R2

substitute/alternative from the residual variances. Specifically,
we use the following.

(9)

where Vnull is the variance of the residuals from the null model
(the model with only an intercept and random effects) and Vmodel

is  the  variance  of  the  residuals  from the  full  model.  This  R2

from equation (9) can be interpreted as the additional variance
explained  by  the  fixed  effects  over  that  explained  by  the
random effects. In our case, we find R2 = 0.79. This means that
the explanatory variables (those listed above in Table 2), even
though they are discretized/simplified, explain a high majority
of  the  variance  observed  in  the  accident  counts.  This  result
gives credence to our procedure and the selection of variables.

3.2. Influence Area

Since we consider just the two categories of influence area
and  clear  zone,  the  corresponding  variable  representing  the
influence area is binary and takes values of 0 and 1 when our
freeway segment is  in the clear zone (or not in the influence
area)  and  when  our  segment  is  in  an  influence  area,
respectively. That is, the clear zone is essentially the baseline
category and the influence area is the adjustment to it. Using
the property put forth in equation (8), we find that the influence
area  affects  the  number  of  freeway  accidents  by  a  factor  of
exp{1.471(1)} = 4.355, or is associated with more than 4-fold
increase in accident frequency compared to being in the clear
zone  (base  case,  when  the  binary  variable  is  set  to  0)  or  a
segment more representative to mainline traffic. We note that
interpreting  and  generalizing  our  results  should  be  done
cautiously.  Our fitted parameter estimate is  likely specific to
the source of the data, the 38 ramp locations along I75 and I24
in  Hamilton  County  (TN),  and  only  provides  evidence  that
accident frequency significantly increases in influence areas.

Most  ramp  studies  focus  exclusively  on  accidents
occurring  within  ramp  locations  [7],  and  do  not  compare
accident counts between ramp and mainline freeway segments
(as we have done). Thus, direct comparison of the results to the
existing  literature  is  difficult.  In  an  early  work  studying
freeway exit ramps, however, Taylor and McGee [68] reported
that  erratic  maneuvers  are  a  common  occurrence  at  these
locations,  and  that  the  number  of  crashes  there  is  four  times
greater than at any other freeway location (a result similar to
our results above).

Lastly,  we  note  that  several  interactions  involving
‘influence  area’  were  pursued  (influence  area  by  weather,
influence area by rush hour, etc.), yet none were found to be
statistically significant predictors.  This is  itself  interesting in
that it suggests the effect of the influence area on the accident
count is, for the most part, constant across different levels of
the other variables. Again, we interpret this result with caution
and note that both weather and rush hour variables were both
highly  simplified  into  two  categories.  Using  more  nuanced
categories  may  result  in  the  identification  of  significant
interactions. For example, observing rain across a continuum of
intensities  may  help  to  identify  some  significant  (and
interesting) interactions with the influence areas. Along these
lines, Malin et al. [36] investigated numerous types/intensities
of  precipitation  on  different  types  of  roadways.  The  authors
found that the effect of different precipitation on roadway risk
varied by the type of roadway.

3.3. Rush Hour and Rainy Weather

Because rush hour and rain have a significant interactive
effect  (see  Table  2  above),  their  effects  on  accident  counts
cannot  be  identified  independently.  That  is,  the  significant
interaction between rush hour and rain means that the effect of
rain on the accident count depends on the level of rush hour, or
equivalently  (from  the  other  perspective),  the  effect  of  rush
hour  on  the  accident  count  depends  on  the  level  of  rain.
Moreover,  since neither rush hour nor rain interacts  with the
influence area (see above), our interpretation of rush hour and
rain applies to both the influence area and clear zone accidents.

𝜆𝑖 = exp {log(𝜂𝑖) + 𝛽0 + ∑ 𝑥𝑖𝛽𝑖

𝑛

𝑖=1

} 

= 𝜂𝑖 ∗ exp{𝛽0} ∗ exp {∑ 𝑥𝑖𝛽𝑖

𝑛

𝑖=1

} 

= 𝜂𝑖 ∗ exp{𝛽0} ∗ exp{𝑥1𝛽1} ∗ exp{𝑥2𝛽2} ∗ … ∗ exp{𝑥𝑛𝛽𝑛} 

𝑅2 =
𝑉𝑛𝑢𝑙𝑙−𝑉𝑚𝑜𝑑𝑒𝑙

𝑉𝑛𝑢𝑙𝑙
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From  the  rush  hour  perspective,  when  the  rain  variable
takes a value of 0, or when we have clear/cloudy conditions (no
rain), rush hour affects the number of freeway accidents by a
factor of exp{0.743(1) − 0.558(0 * 1)} = 2.102, or is associated
with  about  a  2-fold  or  110%  increase  in  accident  frequency
compared  to  being  in  non-rush  hour  conditions  (base  case,
when the  rush hour  variable  is  set  to  0).  However,  when the
rain variable takes a value of 1, or when we have rainy weather
conditions (actually rain, fog, or snow, but simplified as ‘rainy’
conditions),  the  rush  hour  affects  the  number  of  freeway
accidents by a factor of exp{0.743(1) − 0.558(1 * 1)} =1.20, or
is  associated  with  just  a  modest  20%  increase  in  accident
frequency  compared  to,  again,  being  in  non-rush  hour
conditions. This is the interaction effect: rush hour conditions
affect the accident frequency, but the precise effect depends on
the weather.  More summarize more specifically,  if  it  is  clear
(no  rain,  fog,  or  snow),  rush  hours  increase  the  accident
frequency substantially by about 110%; if it is rainy (rain, fog,
snow),  rush  hours  increase  the  accident  frequency  more
modestly,  by  about  20%.

Can  we  explain  this  result?  It  is  difficult  to  find  direct
support for this result in the existing literature as few studies
have looked at  the  interaction of  rush hours  and rain  events.
Certainly,  our  results  during  clear  conditions  make  sense  as
several  works  have  verified  that  accidents  increase  during
periods  of  increased  volume/rush  hours  [47,  48].  However,
during rainy conditions, we observe a more modest increase in
accident frequency. Why is this? A possible explanation is that
inclement weather may reduce traffic volumes and aggressive
driving  (because  of  decreased  visibility,  increased  driver
caution,  etc.)  typically  seen  during  rush  hours.  Therefore,
instead  of  compounding  the  effect  with  increased
volume/congestion,  the  rain  lessens  the  effect.  At  the  very
least,  this  result  illustrates  the  very  complicated,  nuanced
relationship between driving conditions and accidents. We can
try  to  explain  our  findings  mechanistically  by  looking  at  the
observable effects of rain on traffic. Research has shown that
adverse weather can result in decreases in traffic volume [69],
decreases in speed [70], and increases in mean headway [71]. It
is  possible,  then,  that  slower  speeds  and  increased  spacing
reduce the dangerous effects of rush hour conditions.

Next,  from  the  rain  perspective,  when  the  rush  hour
variable takes a value of 0, or when we observe off-peak hours
(non-rush  hour),  the  rainy  weather  affects  the  number  of
freeway accidents by a factor of exp{−1.456(1) − 0.558(0*1)}
=  0.233,  or  is  associated  with  a  76%  decrease  in  accident
frequency  compared  to  being  in  clear  conditions  (base  case,
when the rainy variable is set to 0). However, when the rush
hour  variable  takes  a  value  of  1,  or  when  we  observe  peak
traffic  conditions,  the  rainy  weather  affects  the  number  of
freeway accidents by a factor of exp{−1.456(1) − 0.558(1*1)}
=  0.133,  or  is  associated  with  an  87%  decrease  in  accident
frequency  compared  to,  again,  being  in  clear  conditions,  but
simply  from  the  point  of  view  of  weather.  To  summarize,
during  non-rush  hour  conditions,  rain  decreases  the  accident
frequency substantially, and during rush hours, this decrease is
intensified.

Can  we  explain  this  result?  At  first  glance,  the  results
above may seem surprising (that rain generally decreases the
frequency of accidents) since many studies suggest roadways
generally become more dangerous during rain and inclement
conditions  [36].  However,  we  only  consider
highways/freeways  in  this  analysis,  and  some  studies,
particularly those focusing on similar roadway types, support
our  result.  A  multi-year  study  by  Peltola  [72]  found  that  a
majority of traffic accidents on “main roads” occurred during
clear/cloudy  weather  conditions  (incidentally,  the  same
distinction  was  used  in  this  study).  Also,  Chengye  and
Ranjitkar [8] found a decrease in city highway accidents with
the onset  of  rainy weather,  likely attributable to the fact  that
traffic volume is reduced on rainy days, and drivers are more
cautious. Moreover, Eisenberg [39] generally (for all roadway
types)  found  a  negative  correlation  between  monthly
precipitation and fatal  accidents.  As stated by Edwards  [73],
“…relationship between adverse weather and road accidents is
far from straight-forward.”

3.4. Model Diagnostics

A well-known issue with generalized linear mixed models
is that it is difficult to diagnose misspecification problems with
the assumed model form. Specifically, there are few checks for
the  entire  model  structure,  including  all  levels  of  random
effects. To address this drawback of generalized linear mixed
models,  the  ‘DHARMa’  package  for  R  [74]  was  created  to
assess  the  appropriateness  of  model  specifications.  The
DHARMa package uses a simulation-based approach to create
interpretable,  standardized  residuals  (with  values  between  0
and  1).  Essentially,  the  observations  are  compared  to  the
empirical  cumulative  density  functions  associated  with  each
predicted  value.  Fig.  (4)  presents  the  DHARMa  diagnostic
plots associated with our model.

On the left plot, we have a quantile-quantile plot to detect
overall  deviations  from the  expected  distribution  with  added
tests for the correct distribution (Kolmogorov-Smirnov Test),
dispersion, and outliers. Here, adherence to the transverse line
suggests that our model form is appropriate. For the K-S test,
we have a p-value (for K-S test) of 0.88, and NO evidence that
our model is incorrectly specified. On the right, we have a plot
of the standardized residuals against the predicted values with
additional empirical 0.25, 0.5, and 0.75 quantiles (solid black
lines)  from  theoretical  0.25,  0.5  and  0.75  quantiles  (dashed
black  lines)  to  help  detect  deviations  from uniformity.  Here,
the residuals look uniform (no curvature, change in variance),
and the test of deviation of these residuals from their quantiles
has  an  associated  p-value  of  0.29.  Thus,  again,  we  have  no
evidence of incorrect specification. We can conclude that our
model,  as  specified  by  the  variables  chosen,  accurately
approximates the data and can explain the observed accident
counts without overlooking some major underlying trend. In an
application  by  Zhang  [75],  a  Poisson  model  with  spatially
dependent  random  effects  was  used  to  approximate  the
accident counts of teenage drivers. As above, the authors used
the  DHARMa  package  and  the  resultant  QQ  plots  of  the
residuals to conclude that their model was correctly specified.
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Fig. 4. DHARMa output for our NB mixed-effects model.

3.5. Model Validation

To  validate  our  procedure  and  model  specification,  we
perform a cross-validation (CV) procedure. The CV technique
used here is actually a repeated, stratified random subsampling
procedure with training and testing subsets of the data. Such a
procedure is necessary since our model estimates two random
components nested in the four route locations. For each ramp,
two of the eight counts were randomly assigned to a testing set
and  the  remaining  six  counts  were  assigned  to  a  training  set
(so, 75%-25% training-testing split).

Next, our mixed-effects NB model was fit to the training
set. The fitted regression parameters (based on the training set)
and the observed values of the variables in the testing set were
then used to predict the number of accidents in the testing set.
This process was repeated 100 times with training and testing
sets randomly chosen in each iteration. As a first assessment,
we use the root mean square error (RMSE) to determine if the
model is under- or over-fitting the data. The RMSE is given by

(10)

where  y^i  is  the  predicted  number  of  accidents,  yi  is  the
observed count, and n is the sample size. If our model is under-
/over-fitting the data, the RMSEs for the testing and training
sets  will  differ  significantly.  For  each  of  the  100  iterations
discussed above, we can apply equation (10) and produce an
RMSE for the training and test set, and thus have RMSEs that
can be tested via a paired test. Based on that test, we have no
evidence  to  suggest  that  the  training  and  testing  sets  yield
different RMSEs (Estimated mean = 0.122, t = 0.823, df = 99,
p-value  =  0.409),  and  we  can  conclude  that  our  model  is
neither  over-  nor  under-fitting  the  data.

Lastly,  to  assess  the  predictive  ability  of  our  model,  we
employ a  multiclass  ROC analysis.  The area  under  the  ROC
curve (AUC) is a widely used measure of the performance of
supervised  classification  rules.  The  traditional  ROC  is
applicable to the two-class case but has been extended to the
case  of  more  than  two  classes  [76].  This  multiclass  ROC

averages  pairwise  comparisons  between  classes  and  the
resulting  AUC  calculation  has  essentially  the  same
interpretation as that of the two-class case. For each of the 100
iterations of training/testing described above, we calculated the
multiclass AUC via the ‘pROC’ package in R [77]. From these
100 AUCs, the resulting 95% confidence interval for the test
set  is  (0.837,  0.914).  Interpreting  AUC  is  subjective  and
relative, but this result indicates that our model (as specified)
is, by most standards, a very good predictor of accidents.

4. DISCUSSION

Related to our procedure, there are numerous refinements
that can be made. There is some evidence that more accidents
are  observed  near  off-ramps  than  on-ramps  [7]  and  different
ramp types have different  effects  on accident  frequency [78]
and  [10].  Although  not  discussed  previously,  a  separate
analysis of the same data failed to find significant differences
between on- and off-ramps,  but  no distinction between ramp
types was pursued. At the time of writing, detailed descriptions
of ramps were not available, but future work could distinguish
between  broad  categories  of  ramps.  Furthermore,  location-
specific  details  (road  geometry,  visibility,  speed  limits,  etc.)
surely  play  an  important  part  in  defining  influence  areas.
Future  work  will  pursue  defining  influence  areas  precisely
based  on  roadway  features  near  ramps.  Next,  as  discussed
previously, we only consider weekday/commuter accidents in
this  analysis.  Weekend/recreational  travel  may  likely
contribute  to  accident  occurrence,  and  future  analyses  will
pursue these cases. Next, our procedure does not consider the
severity of accidents. Although severity information (such as
fatalities,  etc.)  was  not  available  at  the  time of  this  analysis,
including such information in the data aggregation procedure
would  be  straightforward.  Numerous  published  works  have
performed  analyses  distinguishing  between  accidents  of
varying severity [79]. Next, it has been shown that additional
factors such as vehicle type [80] driver demographics such as
age, gender, etc. [18] and driver states [81] play important roles
in accident frequency/severity. Future work will pursue these
variables.  Lastly,  we  acknowledge  that  our  procedure  makes
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several simplifications that could overlook important features.
For example, among our weather variable categories, we do not
distinguish  between rain  events  of  different  intensities.  Such
data  is  available,  and future  work could  introduce  additional
rain categories, or possibly create a continuous variable for rain
to  account  for  varying  intensity.  Several  works  have
investigated the effect of rain intensity on roadway accidents
[82].

In  their  review  of  current  accident  analysis  techniques,
Gutierrez-Osorio  and  Pedraza  [83]  state,  “the  study  of  road
accident prediction is…open to innovation in the research of
algorithms and data analysis techniques…” Future work in the
area  will  likely  pursue  such  modern  analysis  techniques  to
more accurately model accident counts and/or identify factors
associated  with  accident  occurrence.  There  are  numerous
works  investigating  the  effectiveness  of  these  innovative
techniques on accident data. Ren et al. [84] used a type of deep
learning  model,  called  a  long  short-term  memory  (LSTM)
architecture  model,  to  predict  traffic  accident  risk.  Based  on
spatial  and  temporal  traffic  accident  data  collected  from
Beijing,  their  model  outperformed  other,  more  traditional
models.  Ait-Mlouk  and  Agouti  [85]  used  association  rule
mining, a technique that extracts correlations among different
attributes in a dataset, to analyze road accidents in Morocco.
The  authors  were  able  to  identify  meaningful  relationships
between certain variables and roadway accidents. Moriya et al.
[86] explored the use of a clustering algorithm (using Bayesian
information criterion (BIC) and Akaike information criterion
(AIC) for  cluster  selection) to predict  accident  counts and to
identify risk factors. Using traffic date from Tokyo roads and
intersections, the authors successfully identified three distinct
clusters  of  locations  based  on  riskiness.  Generally,  these
modern techniques ably address complicated combinations of
variables,  and  we  are  optimistic  that  future  work  using  such
techniques will discover interesting relationships.

CONCLUSION

In this work, we present a procedure aimed at identifying
the relationships between roadway accidents and explanatory
variables based on proximity to ramp, weather, and time-of-day
conditions. Among these, the variable identifying ramp traffic
is  of  primary  importance  as  it  will  potentially  allow  us  to
quantify the effect of ramps on accident frequency, a topic that
has received little attention to date.  To test  the legitimacy of
our  procedure,  we  apply  our  methodology  to  real-world
accident  data  from  Hamilton  County,  TN.

Our  work  requires  substantial  preprocessing  to  create  a
dataset amenable to our analysis. That is, we have to ‘build’ a
dataset  of  accident  counts  and  associated  ramp designations,
weather  conditions,  and  time-of-day.  To  do  this,  we  first
develop a method of distinguishing ramp traffic from adjacent
mainline  traffic.  We  define  the  short  sections  immediately
upstream/downstream  of  exit-/on-ramps,  respectively,  as
influence  areas  or  areas  potentially  affected  by  ramp  traffic.
The sections further upstream/downstream of these segments
are considered clear zones, or areas representative of mainline
traffic. Along our freeway collection site, 38 suitable ramps are
chosen, and influence areas and clear zones are identified for

each.  Then,  from  Hamilton  County  emergency  services
records, accident counts are assigned to each influence area and
clear  zone.  Finally,  time-of-day  information  and  weather
conditions are assigned to each accident from accident reports
and the DarkSky weather application, respectively. This time-
of-day  and  weather  information  is  ultimately  simplified  to
distinguish  between  rush/non-rush  hours  and  clear/rainy
conditions, respectively. In the end, our dataset contains 1,085
accident records, each of which has an associated ramp/route,
rush hour, weather (clear or rainy), and section type (influence
area or clear zone) designation.

A statistical model, a Negative Binomial (NB) regression
model  with  both  fixed  and  random  effects,  is  pursued  to
provide the link between accident counts and our explanatory
variables.  A  benefit  of  the  regression  form  is  the
interpretability  of  the  fitted  model  parameters.  That  is,  the
fitted parameters will allow us to quantify the relative effect of
variables on the response. A novel aspect of our procedure is
the inclusion of several interactions between variables that are
traditionally associated with accident frequency. The model is
applied to our dataset, and based on the model diagnostics and
a validation procedure, our methodology is justified. This type
of  model,  with  this  combination  of  explanatory  variables,
appropriately  captures  the  majority  of  the  variability  (more
than 79%) observed in accident counts.

Interpreting  the  fitted  regression  parameters  leads  to
several interesting findings, many of which are logical or agree
with the current  literature and the work of  researchers in the
field. First,  compared to being in the clear zone (or mainline
segment),  being  in  an  influence  area,  on  average,  results  in
about  a  4-fold  increase  in  accident  frequency.  In  addition  to
this,  and  interestingly,  the  influence  area  was  not  found  to
interact with any other variables, so the effect of the influence
area  on  the  accident  count  is  roughly  constant  across  these
other variables. While it may seem intuitive, this result is the
major  finding  of  this  work.  We are  able  to  directly  compare
ramp locations to  adjacent  mainline segments  and ultimately
quantify the effect of ramp traffic.

An  interesting  result  from  the  fitted  model  is  the
statistically significant interaction between rush hour and rain
variables. This tells us that the two variables are dependent and
that  their  relationship  with  accident  frequency  cannot  be
described via main effects only. Interpreting our fitted model
parameters,  we  find  that  during  clear  conditions,  rush  hour
conditions increase the accident frequency substantially, while
during rainy conditions, this increase is much less stark. Or, we
can interpret this interaction from the other point of view, in
terms  of  weather.  During  non-rush  hour  conditions,  rain
decreases the accident frequency substantially; and during rush
hours,  this  decrease  is  intensified.  These  interpretations
illustrate  the  complicated  relationship  between  rush  hour
conditions and inclement weather, and how their relationship
with accident frequency is nuanced.

Clearly,  because  this  is  a  case  study  with  just  two
freeways,  we  cannot  make  any  recommendations  to
administrators based on our findings, nor do we claim that our
results  are  transferable  to  freeways  in  general.  However,  we
believe our work has identified some interesting relationships
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and stands as a proof-of-concept. Subsequent work considering
more  diverse  roadways  and/or  ramp  locations  could  provide
more  general  results  and potentially  the  evidence needed for
policy  changes  and/or  remedial  measures.  Such  measures
include  structural  changes  such  as  widening,  striping,  and
canalization, but may also include ramp metering which would
regulate traffic flow and mitigate collisions, particularly those
during  rush  hours.  Currently,  there  is  a  rich  field  of
sophisticated,  state-of-the-art  methods  to  optimize  flow
through complicated systems [87], some of which have clear
application to freeway ramps.
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